Pascal üçgeni – Binom
Bir kümenin alt kümelerinin sayısını gösteren “PASCAL” üçgenini oluşturalım.
Kümenin Eleman Sayısı:
s(A)=0............................................ ...............1
s(A)=1............................................ ............1.....1
s(A)=2............................................ .......1.....2.....1
s(A)=3............................................ ..1.....3.....3.....1
s(A)=4..........................................1. ....4.....6.....4.....1
s(A)=5......................................1..... 5.....10....10.....5....1 ...
Üçgenin tepesinde 1 yazdık.Sonraki satırların ilk ve son sayılarını yine 1 aldık.Bir satırda ardışık iki sayının toplamını, bu sayıların ortasına gelecek şekilde bir alt satıra yazdık.Bu işlemlere yukardan aşağı doğru devam ettik.
Örneğin; s(A)=4 ..............1.....4.....6.....4.....1
s(A)=5..........1.....5.....10.....10.....5.....1
Bu tablodaki sayıların ne ifade ettiğini gösterelim.
A={a,b,c} kümesi 3 elemanlı olup bu kümenin alt kümelerini yazalım.
0 elemanlı alt kümesi{} 1 tane
1 elemanlı alt kümeleri{a},{b},{c} 3 tane
2 elemanlı alt kümeleri{a,b},{a,c},{b,c}3 tane
3 elemanlı alt kümeleri{a,b,c} 1 tane
s(A)=3 olan satırdaki sayılar olduğunu görünüz.O halde bu tablo, bir kümenin 0 elemanlı, 1 elemanlı, 2 elemanlı,....alt kümelerinin sayısını gösterir.
Pascal Üçgenini biraz daha büyüterek aşağıdaki örnekleri inceleyelim.
*6 elemanlı bir kümenin 2 elemanlı 15 tane alt kümesi vardır.(s(A)=6‘nın
satırındaki üçüncü sayı)
*5 elemanlı bir kümenin 2 elemanlı en az 3 elemanlı kaç tane alt kümesi olduğunu araştıralım:
3 elemanlı..........10..........(s(A)=5’in satırında 4. sayı)
4 elemanlı..........5..........(s(A)=5’in satırında 5. sayı)
*7 elemanlı bir kümenin en az 2 elemanlı kaç alt kümesi olduğunu araştıralım:
1.YOL: (21+35+21+7+1)=120
2.YOL: 2 7-(1+7)=128-8=120 (Neden?)
Binom Açılımı:
(a+b)n nin açılımında Pascal Üçgenindeki sayılar terimdeki katsayıları olur.a’nın kuvvetleri n den 0 a kadar azalarak, b’nin kuvvetleri 0 dan n ye kadar artarak yazılır.
(a+b)5=?
Katsayılar 1 5 10 10 5 1
A nın kuvvetleri a5 a4 a3 a2 a 1
B nin kuvvetleri 1 b b2 b3 b4 b6
(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5
*(5x-3y)2=?
Katsayılar 1 2 1
5x’in kuvvetleri 25x2 5x 1
-3y’nin kuvvetleri 1 -3y 9y2
(5x-3y)2= 25x2 -2.5x.3y +9y2= 25x2 –30xy +9y2
Yukarda ki örnekten de görülebileceği gibi negatif terimin tek kuvvetlerinin olduğu terimlerin işareti negatiftir
Varlık Felsefesi
VARLIK FELSEFESİ Varlığı konu olarak ele alan felsefe, genel bir varlık kavramı üzerinde durur. Varlık, evrende varolan herşeyin ortak adıdır. Buna göre varlık, insan bilincinin dışında ondan bağımsız olabileceği gibi, zihne bağımlı olarak da bulunabilir. Örneğin, ağaç, kalem, ev gibi nesneler insan zihninden bağımsız olarak varolan gerçek varlıklardır. Bu tür (gerçek) varlıklar zamana ve mekana bağlı olarak değişir, gelişir ve yok olabilirler. Sayılar, geometrik şekiller, p (pi) sayısı gibi insan bilincinde ve ona bağımlı olarak varolan düşünsel (ideal) varlıklar da vardır. Bu varlıklar zaman ve mekan dışı olup, zihnimizde olduğunu kabul ettiğimiz varlıklardır. Felsefe, düşünsel ve ideal varlığı biraraya getirip genel bir varlık kavramı üzerinde dururken, “Varlık nedir?”, “Varlık var mıdır?”, “Varlığın ilk maddesi nedir?” gibi sorular sorar. Felsefe, varlıkla ilgili çeşitli soruları problem olarak ayrı ayrı inceleyip tartışma konusu yapar. Varlık, felsefenin konus...
0 Yorumlar